The Gsh2 homeodomain gene controls multiple aspects of telencephalic development

Author:

Corbin J.G.1,Gaiano N.1,Machold R.P.1,Langston A.1,Fishell G.1

Affiliation:

1. Developmental Genetics Program and the Department of Cell Biology, The Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA. fishell@saturn.med.nyu.edu

Abstract

Homeobox genes have recently been demonstrated to be important for the proper patterning of the mammalian telencephalon. One of these genes is Gsh2, whose expression in the forebrain is restricted to the ventral domain. In this study, we demonstrate that Gsh2 is a downstream target of sonic hedgehog and that lack of Gsh2 results in profound defects in telencephalic development. Gsh2 mutants have a significant decrease in the expression of numerous genes that mark early development of the lateral ganglionic eminence, the striatal anlage. Accompanying this early loss of patterning genes is an initial expansion of dorsal telencephalic markers across the cortical-striatal boundary into the lateral ganglionic eminence. Interestingly, as development proceeds, there is compensation for this early loss of markers that is coincident with a molecular re-establishment of the cortical-striatal boundary. Despite this compensation, there is a defect in the development of distinct subpopulations of striatal neurons. Moreover, while our analysis suggests that the migration of the ventrally derived interneurons to the developing cerebral cortex is not significantly affected in Gsh2 mutants, there is a distinct delay in the appearance of GABAergic interneurons in the olfactory bulb. Taken together, our data support a model in which Gsh2, in response to sonic hedgehog signaling, plays a crucial role in multiple aspects of telencephalic development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3