Mice lacking HSP90beta fail to develop a placental labyrinth

Author:

Voss A.K.1,Thomas T.1,Gruss P.1

Affiliation:

1. Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany. avoss@gwdg.de

Abstract

The 90 kDa heat-shock proteins (HSP90s) play important roles during stress situations as general chaperones and under physiological conditions in the conformational activation of specific protein substrates. Vertebrates express two cytosolic HSP90s (HSP90alpha and HSP90beta) ubiquitously. We have mutated the Hsp90beta gene in murine embryonic stem cells and generated Hsp90beta mutant mice. Heterozygous animals were phenotypically normal. Interestingly, homozygous embryos developed normally until embryonic day 9.0/9.5. Then, although Hsp90beta is expressed ubiquitously, they exhibited phenotypic abnormalities restricted to the placenta. The mutant concepti failed to form a fetal placental labyrinth and died a day later. Fusion between the allantois and the chorionic plate occurred, allantoic blood vessels invaded the chorion, but then did not expand. Mutant trophoblast cells failed to differentiate into trilaminar labyrinthine trophoblast. Despite conspicuous similarities between HSP90alpha and HSP90beta at the molecular level, our data suggest that HSP90beta has a key role in placenta development that cannot be performed by the endogenous HSP90alpha alone. Analysis of chimeric concepti consisting of mutant embryos and tetraploid embryos or ES cells revealed that wild-type allantois was able to induce mutant trophoblast to differentiate. In contrast, trophoblast wild type at the Hsp90beta locus was unable to differentiate when in contact with mutant allantois. Therefore, the primary defect caused by the Hsp90beta mutation resided in the allantois. The allantois mesoderm is thought to induce trophoblast differentiation. Our results show that Hsp90beta is a necessary component of this induction process.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3