Shaping the zebrafish notochord

Author:

Glickman Nathalia S.12,Kimmel Charles B.1,Jones Martha A.1,Adams Richard J.34

Affiliation:

1. Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254,USA

2. Present address: Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA

3. Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY,UK

4. Present address: Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK

Abstract

Promptly after the notochord domain is specified in the vertebrate dorsal mesoderm, it undergoes dramatic morphogenesis. Beginning during gastrulation,convergence and extension movements change a squat cellular array into a narrow, elongated one that defines the primary axis of the embryo. Convergence and extension might be coupled by a highly organized cellular intermixing known as mediolateral intercalation behavior (MIB). To learn whether MIB drives early morphogenesis of the zebrafish notochord, we made 4D recordings and quantitatively analyzed both local cellular interactions and global changes in the shape of the dorsal mesodermal field. We show that MIB appears to mediate convergence and can account for extension throughout the dorsal mesoderm. Comparing the notochord and adjacent somitic mesoderm reveals that extension can be regulated separately from convergence. Moreover, mutational analysis shows that extension does not require convergence. Hence, a cellular machine separate from MIB that can drive dorsal mesodermal extension exists in the zebrafish gastrula. The likely redundant control of morphogenesis may provide for plasticity at this critical stage of early development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3