Bluegill sunfish use high power outputs from axial muscles to generate powerful suction-feeding strikes

Author:

Camp Ariel L.1ORCID,Roberts Thomas J.1ORCID,Brainerd Elizabeth L.1ORCID

Affiliation:

1. Dept. of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

Abstract

ABSTRACT Suction-feeding fish rapidly expand the mouth cavity to generate high-velocity fluid flows that accelerate food into the mouth. Such fast and forceful suction expansion poses a challenge, as muscle power is limited by muscle mass and the muscles in fish heads are relatively small. The largemouth bass powers expansion with its large body muscles, with negligible power produced by the head muscles (including the sternohyoideus). However, bluegill sunfish – with powerful strikes but different morphology and feeding behavior – may use a different balance of cranial and axial musculature to power feeding and different power outputs from these muscles. We estimated the power required for suction expansion in sunfish from measurements of intraoral pressure and rate of volume change, and measured muscle length and velocity. Unlike largemouth bass, the sternohyoideus did shorten to generate power, but it and other head muscles were too small to contribute more than 5–10% of peak expansion power in sunfish. We found no evidence of catapult-style power amplification. Instead, sunfish powered suction feeding by generating high power outputs (up to 438 W kg−1) from their axial muscles. These muscles shortened across the cranial half of the body as in bass, but at faster speeds that may be nearer the optimum for power production. Sunfish were able to generate strikes of the same absolute power as bass, but with 30–40% of the axial muscle mass. Thus, species may use the body and head muscles differently to meet the requirements of suction feeding, depending on their morphology and behavior.

Funder

National Science Foundation

Brown University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3