A translational continuum of model systems for evaluating treatment strategies in Alzheimer’s disease: isradipine as a candidate drug

Author:

Copenhaver Philip F.1,Anekonda Thimmappa S.23,Musashe Derek4,Robinson Kristine M.2,Ramaker Jenna M.1,Swanson Tracy L.1,Wadsworth Teri L.23,Kretzschmar Doris4,Woltjer Randall L.5,Quinn Joseph F.236

Affiliation:

1. Department of Cell and Developmental Biology

2. Department of Neurology

3. Portland Veterans Administration Medical Center

4. Center for Research on Occupational and Environmental Toxicology

5. Department of Pathology, and

6. Layton Center for Aging and Alzheimer’s Disease Research, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA

Abstract

SUMMARYA growing body of evidence supports the ‘calcium hypothesis’ of Alzheimer’s disease (AD), which postulates that a variety of insults might disrupt the homeostatic regulation of neuronal calcium (Ca2+) in the brain, resulting in the progressive symptoms that typify the disease. However, despite ongoing efforts to develop new methods for testing therapeutic compounds that might be beneficial in AD, no single bioassay permits both rapid screening and in vivo validation of candidate drugs that target specific components of the Ca2+ regulatory machinery. To address this issue, we have integrated four distinct model systems that provide complementary information about a trial compound: the human neuroblastoma MC65 line, which provides an in vitro model of amyloid toxicity; a transgenic Drosophila model, which develops age-dependent pathologies associated with AD; the 3×TgAD transgenic mouse, which recapitulates many of the neuropathological features that typify AD; and the embryonic nervous system of Manduca, which provides a novel in vivo assay for the acute effects of amyloid peptides on neuronal motility. To demonstrate the value of this ‘translational suite’ of bioassays, we focused on a set of clinically approved dihydropyridines (DHPs), a class of well-defined inhibitors of L-type calcium channels that have been suggested to be neuroprotective in AD. Among the DHPs tested in this study, we found that isradipine reduced the neurotoxic consequences of β-amyloid accumulation in all four model systems without inducing deleterious side effects. Our results provide new evidence in support of the Ca2+ hypothesis of AD, and indicate that isradipine represents a promising drug for translation into clinical trials. In addition, these studies also demonstrate that this continuum of bioassays (representing different levels of complexity) provides an effective means of evaluating other candidate compounds that target specific components of the Ca2+ regulatory machinery and that therefore might be beneficial in the treatment of AD.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3