Affiliation:
1. Departments of Zoology and Marine Studies, The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, U.S.A.
Abstract
In the days immediately after moulting, manipulations of external pH, [HCO3−], and [Ca2+] were used to determine the nature of the rapid net Ca2+ influx and attendant apparent net H+ efflux in the blue crab (Callinectes sapidus Rathbun). Both fluxes were strongly inhibited by reductions in external [Ca2+], [HCO3−], or pH. The net Ca2+ influx was reversed at an external concentration of 2.5 mmol l−1, and both fluxes were reversed by reducing the external [HCO3−] to 0.2 mmol l−1. The correlation between net Ca2+ flux and apparent net H+ flux was 0.61 (P<0.01), but the variability and the time course of most experiments indicated that the link was indirect, rather than a direct coupling or cotransport. This conclusion was also borne out by acid-base disturbances that occurred in the low-[Ca2+] treatment. The results are consistent with the hypothesis that inward calcium transport is accompanied by both inward HCO3− transport and outward H+ transport, probably by separate exchanges with ions of like charge such as Na+ and Cl−. Crustecdysone (β-ecdysone) does not appear to be involved in control of these post-moult fluxes and calcification.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献