Force-velocity characteristics and metabolism of carp muscle fibres following temperature acclimation

Author:

Johnston I. A.,Sidell B. D.,Driedzic W. R.

Abstract

Common carp (Cyprinus carpio L.), 1 kg body weight, were acclimated for 1–2 months to water temperatures of either 7–8 degrees C (cold-acclimated group) or 23–24 degrees C (warm-acclimated group). Single fast fibres and small bundles of slow fibres were isolated from the myotomal muscles and chemically skinned. Force-velocity (P-V) characteristics were determined at 7 degrees C and 23 degrees C. The contractile properties of carp muscle fibres are dependent on acclimation temperature. In the warm-acclimated group maximum isometric tensions (P0, kN m-2) are 47 +/− 6 and 64 +/− 5 for slow muscle fibres and 76 +/− 10 and 209 +/− 21 for fast muscle fibres at 7 degrees C and 23 degrees C, respectively. Maximum contraction velocities (Vmax, muscle lengths-1), are 0.4 +/− 0.05 and 1.5 +/− 0.1 at 7 degrees C (slow fibres) and 0.6 +/− 0.04 and 1.9 +/− 0.4 at 23 degrees C (fast fibres). All values represent mean +/− S.E. P0 and Vmax at 7 degrees C are around 1.5-2.0 times higher for slow and fast muscle fibres isolated from the cold-acclimated group. Fibres from 7 degrees C-acclimated carp fail to relax completely following maximal activations at 23 degrees C. The resulting Ca-insensitive force component (50–70% P0) is associated with the development of abnormal crossbridge linkages and very slow contraction velocities. Activities of enzymes associated with energy metabolism were determined at a common temperature of 15 degrees C. Marker enzymes of the electron transport system (cytochrome oxidase), citric acid cycle (citrate synthase), fatty acid metabolism (carnitine palmitoyl transferase, beta-hydroxyacyl CoA dehydrogenase) and aerobic glucose utilization (hexokinase) have 30–60% higher activities in slow muscle from cold-acclimated than from warm-acclimated fish. Activities of cytochrome oxidase and citrate synthase in fast muscle are also elevated following acclimation to low temperature. It is concluded that thermal compensation of mechanical power output by carp skeletal muscle is matched by a concomitant increase in the potential to supply aerobically-generated ATP at low temperatures.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3