The Kinematics of Swimming in Anuran Larvae

Author:

WASSERSUG RICHARD J.1,HOFF KARIN VON SECHENDORF2

Affiliation:

1. Department of Anatomy, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4J1

2. Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4J1

Abstract

The kinematics of swimming in tadpoles from four species of anurans (Rana catesbeiana Shaw, Rana septentrionalis Baird, Rana clamitans Latreille and Bufo americanus Holbrook) was studied using computer-assisted analysis of high speed (≥200 frames s−1) ciné records. 1. Tadpoles exhibit the same positive, linear relationship between tail beat frequency and specific swimming speed commonly reported for subcarangiform fishes. 2. Tadpoles show an increase in the maximum amplitude of the tail beat with increasing swimming speed up to approximately 4 lengths s−1. Above 4 lengths s−1, amplitude approaches an asymptote at approximately 25 % of length. 3. Tadpoles with relatively longer tails have lower specific amplitudes. 4. Froude efficiencies for tadpoles are similar to those reported for most subcarangiform fishes. 5. Bufo larvae tend to have higher specific maximum amplitude, higher tail beat frequencies, lower propeller efficiencies (at least at intermediate speeds) and substantially less axial musculature than do comparable-sized Rana larvae. These differences may relate to the fact that Bufo larvae are noxious to many potential predators and consequently need not rely solely on locomotion for defence. 6. Tadpoles exhibit larger amounts of lateral movement at the snout than do most adult fishes. 7. The point of least lateral movement during swimming in tadpoles is at the level of the semi-circular canals, as assumed in models on the evolution of the vertebrate inner ear. 8. Passive oscillation of anaesthetized and curarized tadpoles at the base of their tail produces normal kinematics in the rest of the tail. This supports the idea that muscular activity in the posterior, tapered portion of the tadpole tail does not serve a major role in thrust production during normal, straightforward swimming at constant velocity. 9. The angle of incidence and lateral velocity of the tail tip as it crosses the path of motion are not consistent with theoretical predictions of how thrust should be generated. The same parameters evaluated at the high point of the tail fin (approximately midtail) suggest that that portion of the tail generates thrust most effectively. 10. Ablation of the end of the tail in passively oscillated tadpoles confirms that the terminal portion of the tadpole tail serves to reduce excessive amplitude in the more anterior portion of the tail, where most thrust is generated. 11. The posterior portion of the tail is important in reducing turbulence around a tadpole. It may also function to produce thrust during irregular, intricate movements, such as swimming backwards. 12. Tadpoles are comparable to subcarangiform fishes of similar size in their maximum swimming speed and mechanical efficiency, despite the fact that they have much less axial musculature and lack the elaborate skeletal elements that stiffen the fins in fishes. The simple shape of the tadpole tail appears to allow these animals efficient locomotion over short distances and high manoeuvrability, while maintaining the potential for rapid morphological change at metamorphosis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3