Thea3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells

Author:

Sun-Wada Ge-Hong1,Toyomura Takao2,Murata Yoshiko2,Yamamoto Akitsugu3,Futai Masamitsu4,Wada Yoh2

Affiliation:

1. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe 610-0395, Japan

2. Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan

3. Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan

4. Futai Special Laboratory, Microbial Chemistry Research Center, CREST, Japan Science and Technology Agency, Tokyo 141-0021, Japan

Abstract

Vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit enzyme that has important roles in the acidification of a variety of intracellular compartments and some extracellular milieus. Four isoforms for the membrane-intrinsic subunit (subunit a) of the V-ATPase have been identified in mammals, and they confer distinct cellular localizations and activities on the proton pump. We found that V-ATPase with the a3 isoform is highly expressed in pancreatic islets, and is localized to membranes of insulin-containing secretory granules in β-cells. oc/oc mice, which have a null mutation at the a3 locus, exhibited a reduced level of insulin in the blood, even with high glucose administration. However, islet lysates contained mature insulin, and the ratio of the amount of insulin to proinsulin in oc/oc islets was similar to that of wild-type islets, indicating that processing of insulin was normal even in the absence of the a3 function. The insulin contents of oc/oc islets were reduced slightly, but this was not significant enough to explain the reduced levels of the blood insulin. The secretion of insulin from isolated islets in response to glucose or depolarizing stimulation was impaired. These results suggest that the a3 isoform of V-ATPase has a regulatory function in the exocytosis of insulin secretion.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3