Stick Insect Locomotion on a Walking Wheel: Interleg Coordination of Leg Position

Author:

DEAN JEFFREY1,WENDLER GERNOT2

Affiliation:

1. Zoologisches Institut, Universitaet zu Koeln; Fakultaet fuer Biologie, Universitaet Bielefeld, Postfach 8640, D-4800 Bielefeld 1, F.R.G.

2. Zoologisches Institut, Universitaet zu Koeln

Abstract

Continuous measurements of anterior-posterior leg position recorded from stick insects walking on a wheel were tested for relationships among spatial and temporal parameters of leg coordination. This analysis revealed that the protraction of middle and rear legs is guided by the ipsilateral front and middle legs respectively. Protraction endpoint for each rear leg shows a significant positive correlation with the simultaneous position of the ipsilateral middle leg (Figs 1,2; Table 1). An analogous, but somewhat weaker, correlation exists between the protraction endpoint of each middle leg and the position of the ipsilateral front leg. This coordination of spatial parameters was tested experimentally by manipulating the position of the forward leg. When a middle leg is restrained in various positions, the ipsilateral rear leg adjusts its protraction endpoint accordingly (Fig. 3). However, its retraction endpoint does not undergo parallel shifts; consequently, step amplitude, protraction duration, and step frequency all change as a function of middle leg position. When a sinusoidal movement is imposed on either a middle or front leg, the adjacent, caudal leg continuously adjusts its protraction endpoint according to the momentary position of the forward leg (Fig. 4). This adjustment is again accompanied by changes in step amplitude and step period, changes which may affect all five unrestrained legs. The anterior-posterior leg position measured in our experiments primarily reflects the angle of the coxo-thoracic joint; this angle is monitored by hair rows and hairplates located on the coxa (Wendler, 1964; Baessler, 1965). Modifying these external proprioceptive inputs revealed both inter- and intrasegmental control functions. The caudally situated hair rows are important for measuring the small variations in the position of the target leg which occur during normal walking. Immobilization of these hairs on a middle leg causes the mean protraction endpoint of the ipsilateral rear leg to shift forward (Fig. 5: o1 versus C) and reduces or eliminates the step by step correlation of this protraction endpoint with middle leg position (Table 1). The additional immobilization of the cranially situated hairplates usually leads to a caudal shift in the protraction endpoint of the ipsilateral rear leg (Fig. 5: o2 versus o1) and reduces any residual correlation (Table 1). The actual position of the protraction endpoint reflects an integration of intersegmental signals representing the position of the target leg and intrasegmental signals from the sensory hairs on the protracting leg. Both operations may affect the duration of protraction in both the operated target leg and the adjacent, caudal leg.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3