Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates

Author:

Maier Esther1,von Hofsten Jonas1,Nord Hanna1,Fernandes Marie2,Paek Hunki2,Hébert Jean M.2,Gunhaga Lena1

Affiliation:

1. Umeå Center for Molecular Medicine, Building 6M, 4th Floor, Umeå University, S-901 87 Umeå, Sweden

2. Departments of Neuroscience and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Abstract

The olfactory sensory epithelium and the respiratory epithelium are derived from the olfactory placode. However, the molecular mechanisms regulating the differential specification of the sensory and the respiratory epithelium have remained undefined. To address this issue, we first identified Msx1/2 and Id3 as markers for respiratory epithelial cells by performing quail chick transplantation studies. Next, we established chick explant and intact chick embryo assays of sensory/respiratory epithelial cell differentiation and analyzed two mice mutants deleted of Bmpr1a;Bmpr1b or Fgfr1;Fgfr2 in the olfactory placode. In this study, we provide evidence that in both chick and mouse, Bmp signals promote respiratory epithelial character, whereas Fgf signals are required for the generation of sensory epithelial cells. Moreover, olfactory placodal cells can switch between sensory and respiratory epithelial cell fates in response to Fgf and Bmp activity, respectively. Our results provide evidence that Fgf activity suppresses and restricts the ability of Bmp signals to induce respiratory cell fate in the nasal epithelium. In addition, we show that in both chick and mouse the lack of Bmp or Fgf activity results in disturbed placodal invagination; however, the fate of cells in the remaining olfactory epithelium is independent of morphological movements related to invagination. In summary, we present a conserved mechanism in amniotes in which Bmp and Fgf signals act in an opposing manner to regulate the respiratory versus sensory epithelial cell fate decision.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3