Temperature adaptations of the thermophilic snail Echinolittorina malaccana: insights from metabolomic analysis

Author:

Chen Ya-qi1,Wang Jie2,Liao Ming-ling2ORCID,Li Xiao-xu1,Dong Yun-wei23ORCID

Affiliation:

1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China

2. The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China

3. Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China

Abstract

ABSTRACT The periwinkle snail Echinolittorina malaccana, for which the upper lethal temperature is near 55°C, is one of the most heat-tolerant eukaryotes known. We conducted a multi-level investigation – including cardiac physiology, enzyme activity, and targeted and untargeted metabolomic analyses – that elucidated a spectrum of adaptations to extreme heat in this organism. All systems examined showed heat intensity-dependent responses. Under moderate heat stress (37–45°C), the snail depressed cardiac activity and entered a state of metabolic depression. The global metabolomic and enzymatic analyses revealed production of metabolites characteristic of oxygen-independent pathways of ATP generation (lactate and succinate) in the depressed metabolic state, which suggests that anaerobic metabolism was the main energy supply pathway under heat stress (37–52°C). The metabolomic analyses also revealed alterations in glycerophospholipid metabolism under extreme heat stress (52°C), which likely reflected adaptive changes to maintain membrane structure. Small-molecular-mass organic osmolytes (glycine betaine, choline and carnitine) showed complex changes in concentration that were consistent with a role of these protein-stabilizing solutes in protection of the proteome under heat stress. This thermophilic species can thus deploy a wide array of adaptive strategies to acclimatize to extremely high temperatures.

Funder

National Natural Science Foundation of China

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3