It's cool to be stressed: body surface temperatures track sympathetic nervous system activation during acute stress

Author:

Jerem Paul12ORCID,Romero L. Michael2

Affiliation:

1. Groningen Institute for Evolutionary Life Sciences, University of Groningen 1 , 9700 CC Groningen , The Netherlands

2. Tufts University 2 Department of Biology , , Medford , MA 02155, USA

Abstract

ABSTRACT The acute stress response can be considered the primary evolutionary adaptation to maximise fitness in the face of unpredictable environmental challenges. However, the difficulties of assessing physiology in natural environments mean that comparatively little is known about how response variation influences fitness in free-living animals. Currently, determining acute stress physiology typically involves blood sampling or cardiac monitoring. Both require trapping and handling, interrupting natural behaviour, and potentially biasing our understanding toward trappable species/individuals. Importantly, limits on repeated sampling also restrict response phenotype characterisation, vital for linking stress with fitness. Surface temperature dynamics resulting from peripheral vasomotor activity during acute stress are increasingly promoted as alternative physiological stress indicators, which can be measured non-invasively using infrared thermal imaging, overcoming many limitations of current methods. Nonetheless, which aspects of stress physiology they represent remains unclear, as the underlying mechanisms are unknown. To date, validations have primarily targeted the hypothalamic–pituitary–adrenal axis, when the sympathetic–adrenal–medullary (SAM) system is likely the primary driver of vasomotor activity during acute stress. To address this deficit, we compared eye and bill region surface temperatures (measured using thermal imaging) with SAM system activity (measured as heart rate variability via electrocardiogram telemetry) in wild-caught captive house sparrows (Passer domesticus) during capture and handling. We found that lower body surface temperatures were associated with increased sympathetic nervous system activation. Consequently, our data confirm that body surface temperatures can act as a proxy for sympathetic activation during acute stress, providing potentially transformative opportunities for linking the acute stress response with fitness in the wild.

Funder

European Commission

National Science Foundation

University of Groningen: Rijksuniversiteit Groningen

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference91 articles.

1. Biology of the Ubiquitous House Sparrow

2. Cutaneous vasoconstrictor response to whole body skin cooling is altered by time of day;Aoki;J. Appl. Physiol.,2003

3. Uninformative parameters and model selection using Akaike's information criterion;Arnold;J. Wildl. Manage.,2010

4. Circadian rhythms: influences of internal and external factors on the period measured in constant conditions;Aschoff;Z. Tierpsychol.,1979

5. Fitting linear mixed-effects models using lme4;Bates;J. Stat. Softw.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3