High epigenetic potential protects songbirds against pathogenic Salmonella enterica infection

Author:

Sheldon Elizabeth1,Zimmer Cedric12ORCID,Hanson Haley1,Koussayer Bilal1,Schrey Aaron3,Reese Darrys1,Wigley Paul4,Wedley Amy L.4,Martin Lynn B.1ORCID

Affiliation:

1. University of South Florida 1 , Global Health and Infectious Disease Research Center and Center for Genomics, Tampa, FL 33612 , USA

2. Université Sorbonne Paris Nord, UR 4443 2 Laboratoire d'Ethologie Expérimentale et Comparée, LEEC , , 93430 Villetaneuse , France

3. Georgia Southern University Armstrong Campus 3 , Department of Biology, Savannah, GA 31419 , USA

4. University of Liverpool 4 Institute of Infection, Veterinary and Ecological Sciences , , Leahurst Campus, Neston CH64 7TE , UK

Abstract

ABSTRACT Animals encounter many novel and unpredictable challenges when moving into new areas, including pathogen exposure. Because effective immune defenses against such threats can be costly, plastic immune responses could be particularly advantageous, as such defenses can be engaged only when context warrants activation. DNA methylation is a key regulator of plasticity via its effects on gene expression. In vertebrates, DNA methylation occurs exclusively at CpG dinucleotides and, typically, high DNA methylation decreases gene expression, particularly when it occurs in promoters. The CpG content of gene regulatory regions may therefore represent one form of epigenetic potential (EP), a genomic means to enable gene expression and hence adaptive phenotypic plasticity. Non-native populations of house sparrows (Passer domesticus) – one of the world's most cosmopolitan species – have high EP in the promoter of a key microbial surveillance gene, Toll-like receptor 4 (TLR4), compared with native populations. We previously hypothesized that high EP may enable sparrows to balance the costs and benefits of inflammatory immune responses well, a trait critical to success in novel environments. In the present study, we found support for this hypothesis: house sparrows with high EP in the TLR4 promoter were better able to resist a pathogenic Salmonella enterica infection than sparrows with low EP. These results support the idea that high EP contributes to invasion and perhaps adaptation in novel environments, but the mechanistic details whereby these organismal effects arise remain obscure.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3