Warmer and more acidic conditions enhance performance of an endemic low-shore gastropod

Author:

Martin Nicole1ORCID,Robinson Tamara B.1,Clusella-Trullas Susana1ORCID

Affiliation:

1. Centre for Invasion Biology, Stellenbosch University Department of Botany and Zoology , , Stellenbosch 7600 , South Africa

Abstract

ABSTRACT Changing ocean temperatures are predicted to challenge marine organisms, especially when combined with other factors, such as ocean acidification. Acclimation, as a form of phenotypic plasticity, can moderate the consequences of changing environments for biota. Our understanding of how altered temperature and acidification together influence species’ acclimation responses is, however, limited compared with that of responses to single stressors. This study investigated how temperature and acidification affect the thermal tolerance and righting speed of the girdled dogwhelk, Trochia cingulata. Whelks were acclimated for 2 weeks to combinations of three temperatures (11°C: cold, 13°C: moderate and 15°C: warm) and two pH regimes (8.0: moderate and 7.5: acidic). We measured the temperature sensitivity of the righting response by generating thermal performance curves from individual data collected at seven test temperatures and determined critical thermal minima (CTmin) and maxima (CTmax). We found that T. cingulata has a broad basal thermal tolerance range (∼38°C) and after acclimation to the warm temperature regime, both the optimal temperature for maximum righting speed and CTmax increased. Contrary to predictions, acidification did not narrow this population's thermal tolerance but increased CTmax. These plastic responses are likely driven by the predictable exposure to temperature extremes measured in the field which originate from the local tidal cycle and the periodic acidification associated with ocean upwelling in the region. This acclimation ability suggests that T. cingulata has at least some capacity to buffer the thermal changes and increased acidification predicted to occur with climate change.

Funder

DST–NRF Centre of Excellence for Invasion Biology

National Research Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECR Spotlight – Nicole Martin;Journal of Experimental Biology;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3