Accelerated abdominal lipid depletion from pesticide treatment alters honey bee pollen foraging strategy, but not onset, in worker honey bees

Author:

Elizabeth Deeter Megan1ORCID,Snyder Lucy A.2,Meador Charlotte2,Corby-Harris Vanessa2ORCID

Affiliation:

1. University of Arizona 1 Department of Entomology and Insect Science , , Tucson, AZ 85721-0036 , USA

2. Carl Hayden Bee Research Center, USDA-ARS 2 , Tucson, AZ 85719 , USA

Abstract

ABSTRACT Honey bee abdominal lipids decline with age, a change thought to be associated with the onset of foraging behavior. Stressors, such as pesticides, may accelerate this decline by mobilizing internal lipid to facilitate the stress response. Whether bees with stressor-induced accelerated lipid loss vary from controls in both the onset of foraging and nutritional quality of collected pollen is not fully understood. We asked whether stressors affect foraging behavior through the depletion of abdominal lipid, and whether stress-induced lipid depletion causes bees to forage earlier and for fattier pollen. We tested this by treating newly emerged bees with one of two pesticides, pyriproxyfen (a juvenile hormone analog) and spirodiclofen (a fatty acid synthesis disruptor), that may affect energy homeostasis in non-target insects. Bees fed these pesticides were returned to hives to observe the onset of foraging behavior. We also sampled foraging bees to assay both abdominal lipids and dietary lipid content of their corbicular pollen. Initially, spirodiclofen-treated bees had significantly more abdominal lipids, but these declined faster compared with controls. These bees also collected less, yet more lipid-rich, pollen. Our results suggest that bees with accelerated lipid decline rely on dietary lipid content and must collect fattier pollen to compensate. Pyriproxyfen treatment reduced the age at first forage but did not affect abdominal or collected pollen lipid levels, suggesting that accelerated fat body depletion is not a prerequisite for precocious foraging.

Funder

Project Apis m.

University of Arizona

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3