Affiliation:
1. Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
2. Department of Pharmacology, Northwestern University, Chicago, IL, USA
Abstract
Limb Girdle Muscular Dystrophy type 2C (LGMD 2C) is caused by autosomal recessive mutations in the γ-sarcoglycan (SGCG) gene. The most common SGCG mutation is a single nucleotide deletion from a stretch of five thymine residues in SGCG exon 6 (521ΔT). This founder mutation disrupts the transcript reading frame, abolishing protein expression. An antisense oligonucleotide exon-skipping method to reframe the human 521ΔT transcript requires skipping four exons to generate a functional, internally-truncated protein. In vivo evaluation of this multi-exon skipping, antisense-mediated therapy requires a genetically appropriate mouse model. The human and mouse γ-sarcoglycan genes are highly homologous in sequence and gene structure, including the exon 6 region harboring the founder mutation. Herein, we describe a new mouse model of this form of limb girdle muscular dystrophy generated using CRISPR/Cas9-mediated gene editing to introduce a single thymine deletion in murine exon 6, recreating the 521ΔT point mutation in Sgcg. These mice express the 521ΔT transcript, lack γ-sarcoglycan protein, and exhibit a severe dystrophic phenotype. Phenotypic characterization demonstrated reduced muscle mass, increased sarcolemmal leak and fragility, and decreased muscle function, consistent with the human pathological findings. Furthermore, we showed that intramuscular administration of a murine-specific multiple exon-directed, antisense oligonucleotide cocktail effectively corrected the 521ΔT reading frame. These data demonstrate a molecularly and pathologically suitable model for in vivo testing of a multi-exon skipping strategy to advance pre-clinical development of this genetic correction approach.
Funder
National Institutes of Health
Publisher
The Company of Biologists
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献