Whistling in caterpillars (Amorpha juglandis, Bombycoidea): sound-producing mechanism and function

Author:

Bura Veronica L.1,Rohwer Vanya G.2,Martin Paul R.2,Yack Jayne E.1

Affiliation:

1. Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6

2. Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6

Abstract

SUMMARYCaterpillar defenses have been researched extensively, and, although most studies focus on visually communicated signals, little is known about the role that sounds play in defense. We report on whistling, a novel form of sound production for caterpillars and rare for insects in general. The North American walnut sphinx (Amorpha juglandis) produces whistle ‘trains’ ranging from 44 to 2060 ms in duration and comprising one to eight whistles. Sounds were categorized into three types: broadband, pure whistles and multi-harmonic plus broadband, with mean dominant frequencies at 15 kHz, 9 kHz and 22 kHz, respectively. The mechanism of sound production was determined by selectively obstructing abdominal spiracles, monitoring air flow at different spiracles using a laser vibrometer and recording body movements associated with sound production using high-speed video. Contractions of the anterior body segments always accompanied sound production, forcing air through a pair of enlarged spiracles on the eighth abdominal segment. We tested the hypothesis that sounds function in defense using simulated attacks with blunt forceps and natural attacks with an avian predator – the yellow warbler (Dendroica petechia). In simulated attacks, 94% of caterpillars responded with whistle trains that were frequently accompanied by directed thrashing but no obvious chemical defense. In predator trials, all birds readily attacked the caterpillar, eliciting whistle trains each time. Birds responded to whistling by hesitating, jumping back or diving away from the sound source. We conclude that caterpillar whistles are defensive and propose that they function specifically as acoustic ‘eye spots’ to startle predators.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference72 articles.

1. Acoustic mimicry in a predator-prey interaction;Barber;Proc. Natl. Acad. Sci. USA,2007

2. Aposematism or startle? Predators learn their responses to the defenses of prey;Bates;Can. J. Zool.,1990

3. Aposematic caterpillars: life-styles of the warningly colored and unpalatable;Bowers,1993

4. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae;Bowers;J. Chem. Ecol.,2003

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3