Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta

Author:

Dieudonne Alexandre1,Daniel Thomas L.1,Sane Sanjay P.2ORCID

Affiliation:

1. University of Washington, United States;

2. National Centre for Biological Sciences, India

Abstract

Abstract Antennal mechanosensors play a key role in control and stability of insect flight. In addition to the well-established role of antennae as airflow detectors, recent studies have indicated that the sensing of antennal vibrations by Johnston’s organs also provides a mechanosensory feedback relevant for flight stabilization. However, few studies have addressed how the individual units, or scolopidia, of the Johnston's organs encode these antennal vibrations and communicate it to the brain. Here, we characterize the encoding properties of individual scolopidia from the Johnston’s organs in the hawk moth, Manduca sexta through intracellular neurophysiological recordings from axons of the scolopidial neurons. We stimulated the flagellum-pedicel joint using a custom setup that delivered mechanical stimuli of various (step, sinusoidal, frequency and amplitude sweeps) waveforms. Single units of the Johnston’s organs typically displayed phaso-tonic responses to step stimuli with short (3-5 ms) latencies. Their phase-locked response to sinusoidal stimuli in the 0.1–100 Hz frequency range showed high fidelity (vector strengths >0.9). The neurons were able to encode different phases of the stimulus motion and are also extremely sensitive to small amplitude (<0.05º) deflections with some indication of directional tuning. In many cases, the firing frequency of the neurons varied linearly as a function of the stimulus frequency at wing beat and double wing beat frequencies, which may be relevant to their role in flight stabiliization. Iontophoretic-fills of these neurons with fluorescent dyes showed that they all projected in the Antennal Mechanosensory and Motor Center (AMMC) area of the brain. Together, these results showcase the speed and high sensitivity of scolopidia of the Johnston’s organs, and hence their ability to encode fine antennal vibrations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3