Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running

Author:

Mongeau Jean-Michel1,Demir Alican2,Dallmann Chris J.1,Jayaram Kaushik1,Cowan Noah J.2,Full Robert J.1

Affiliation:

1. University of California at Berkeley, United States;

2. Johns Hopkins University, United States

Abstract

Abstract The integration of information from dynamic sensory structures operating on a moving body is a challenge for locomoting animals and engineers seeking to design agile robots. As a tactile sensor is a physical linkage mediating mechanical interactions between body and environment, mechanical tuning of the sensor is critical for effective control. We determined the open-loop dynamics of a tactile sensor, specifically the antenna of the American cockroach, Periplaneta americana, an animal that escapes predators by using its antennae during rapid closed-loop tactilely mediated course control. Geometrical measurements and static bending experiments revealed an exponentially decreasing flexural stiffness (EI) from base to tip. Quasi-static experiments with a physical model support the hypothesis that a proximodistally decreasing EI can simplify control by increasing preview distance and allowing effective mapping to a putative control variable - body-to-wall distance - compared to an antenna with constant EI. We measured the free response at the tip of the antenna following step deflections and determined that the antenna rapidly damps large deflections: over 90% of the perturbation is rejected within the first cycle, corresponding to almost one stride period during high-speed running (~50 ms). An impulse-like perturbation near the tip revealed dynamics that were characteristic of an inelastic collision, keeping the antenna in contact with an object after impact. We contend that proximodistally decreasing stiffness, high damping, and inelasticity simplify control during high-speed tactile tasks by increasing preview distance, providing a one-dimensional map between antennal bending and body-to-wall distance, and increasing the reliability of tactile information.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3