The asymmetric chemical structures of two mating pheromones reflect their differential roles in mating of fission yeast

Author:

Seike Taisuke1ORCID,Maekawa Hiromi2ORCID,Nakamura Taro3ORCID,Shimoda Chikashi3ORCID

Affiliation:

1. Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan

2. Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan

3. Department of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Abstract

In the fission yeast Schizosaccharomyces pombe, the mating reaction is controlled by two mating pheromones, M-factor and P-factor, secreted by M- and P-type cells, respectively. M-factor is a C-terminally farnesylated lipid peptide, whereas P-factor is a simple peptide. To examine whether this chemical asymmetry in the two pheromones is essential for conjugation, we constructed a mating system in which either pheromone can stimulate both M- and P-cells, and examined whether the resulting autocrine strains can mate. Autocrine M-cells responding to M-factor successfully mated with P-factor-less P-cells, indicating that P-factor is not essential for conjugation; by contrast, autocrine P-cells responding to P-factor were unable to mate with M-factor-less M-cells. The sterility of the autocrine P-cells was completely restored by expressing the M-factor receptor. These observations indicate that the different chemical characteristics of the two types of pheromone, a lipid and a simple peptide, are not essential; however, a lipid peptide might be required for successful mating. Our findings allow us to propose a model of the differential roles of M-factor and P-factor in conjugation of S. pombe.

Funder

Japan Society for the Promotion of Science

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3