Affiliation:
1. Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
Abstract
ABSTRACT
Next-generation sequencing can quickly reveal genetic variation potentially linked to heritable disease. As databases encompassing human variation continue to expand, rare variants have been of high interest, since the frequency of a variant is expected to be low if the genetic change leads to a loss of fitness or fecundity. However, the use of variant frequency when seeking genomic changes linked to disease remains very challenging. Here, I explored the role of selection in controlling human variant frequency using the HelixMT database, which encompasses hundreds of thousands of mitochondrial DNA (mtDNA) samples. I found that a substantial number of synonymous substitutions, which have no effect on protein sequence, were never encountered in this large study, while many other synonymous changes are found at very low frequencies. Further analyses of human and mammalian mtDNA datasets indicate that the population frequency of synonymous variants is predominantly determined by mutational biases rather than by strong selection acting upon nucleotide choice. My work has important implications that extend to the interpretation of variant frequency for non-synonymous substitutions.
Funder
Sigrid Jusélius Foundation
European Research Council
Publisher
The Company of Biologists
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献