Novel roles of Fgfr2 in AER differentiation and positioning of the dorsoventral limb interface

Author:

Gorivodsky Marat1,Lonai Peter1

Affiliation:

1. Department of Molecular Genetics, The Weizmann Institute of Science,Rehovot, Israel

Abstract

The epithelial b variant of Fgfr2 is active in the entire surface ectoderm of the early embryo, and later in the limb ectoderm and AER,where it is required for limb outgrowth. As limb buds do not form in the absence of Fgfr2, we used chimera analysis to investigate the mechanism of action of this receptor in limb development. ES cells homozygous for a loss-of-function mutation of Fgfr2 that carry aβ-galactosidase reporter were aggregated with normal pre-implantation embryos. Chimeras with a high proportion of mutant cells did not form limbs,whereas those with a moderate proportion formed limb buds with a lobular structure and a discontinuous AER. Where present, the AER did not contain mutant cells, although mutant cells did localize to the adjacent surface ectoderm and limb mesenchyme. In the underlying mesenchyme of AER-free areas,cell proliferation was reduced, and transcription of Shh and Msx1 was diminished. En1 expression in the ventral ectoderm was discontinuous and exhibited ectopic dorsal localization, whereas Wnt7a expression was diminished in the dorsal ectoderm but remained confined to that site. En1 and Wnt7a were not expressed in non-chimeric Fgfr2-null mutant embryos, revealing that they are downstream of Fgfr2. In late gestation chimeras, defects presented in all three limb segments as bone duplications, bone loss or ectopic outgrowths. We suggest that Fgfr2 is required for AER differentiation, as well as for En1 and Wnt7a expression. This receptor also mediates signals from the limb mesenchyme to the limb ectoderm throughout limb development, affecting the position and morphogenesis of precursor cells in the dorsal and ventral limb ectoderm, and AER.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3