Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment

Author:

Frye Michaela1,Gardner Clare2,Li Elizabeth R.1,Arnold Isabel13,Watt Fiona M.1

Affiliation:

1. Keratinocyte Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK

2. Pfizer Global Research and Development, Sandwich CT13 9NJ, UK

3. Present address: Institute for Genetics, University of Cologne, Cologne D-50674, Germany

Abstract

Activation of Myc (c-Myc) causes epidermal cells to exit the stem cell compartment and differentiate into sebocytes and interfollicular epidermis at the expense of the hair lineages. To investigate how Myc exerts these effects we analysed the transcription of more than 10,000 genes following Myc activation in the basal layer of mouse epidermis for 1 or 4 days. The major classes of induced genes were involved in synthesis and processing of RNA and proteins, in cell proliferation and in differentiation. More than 40% of the downregulated genes encoded cell adhesion and cytoskeleton proteins. Repression of these genes resulted in profound changes in the adhesive and motile behaviour of keratinocytes. Myc activation inhibited cell motility and wound healing, correlating with decreased expression of a large number of extracellular matrix proteins. Cell adhesion and spreading were also impaired,and this correlated with decreased expression of the α6β4 integrin,decreased formation of hemidesmosomes and decreased assembly of the actomyosin cytoskeleton. We propose that Myc stimulates exit from the stem cell compartment by reducing adhesive interactions with the local microenvironment or niche, and that the failure of hair differentiation reflects an inability of keratinocytes to migrate along the outer root sheath to receive hair inductive stimuli.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3