The relationship between cell proliferation and the transcription of the nuclear oncogenes c-myc, c-myb and c-ets-1 during feather morphogenesis in the chick embryo

Author:

Desbiens X.1,Queva C.1,Jaffredo T.1,Stehelin D.1,Vandenbunder B.1

Affiliation:

1. Laboratoire de Biologie du Developpement, Universite des Sciences et Techniques de Lille Flandres-Artois, Villeneuve, d'Ascq, France.

Abstract

We have described the expression of three nuclear protooncogenes, c-myc, c-myb and c-ets-1 during feather morphogenesis in the chick embryo. In parallel with the expression patterns obtained by in situ hybridization, we have mapped the spatial distribution of S-phase cells by monitoring the incorporation of 5-bromodeoxyuridine. We do not detect c-myc or c-myb transcripts during the early stages when S-phase cells are scattered in the dermis and in the epidermis. Rather c-ets-1 transcripts are abundant in the dermal cells which divide and accumulate under the uniform epidermis. At the onset of the formation of the feather bud, cells within each rudiment cease DNA replicative activities and c-myc transcripts are detected both in the epidermis and in the underlying dermis. This expression precedes the reentry into the S phase. The transcription of c-myb, which has been previously tightly linked to hemopoietic cells is also detected in the developing skin. This expression is essentially located in proliferating epidermal cells on and after the beginning of feather outgrowth. As feather outgrowth proceeds, the distribution of c-myc and c-myb transcripts is restricted to the highly proliferating epidermis. In contrast c-ets-1 transcripts are never detected in the epidermis. During the later stages of skin morphogenesis, the transcription of c-ets-1 is restricted to the endothelial cells of blood vessels, as previously described. We suggest that the differential expression of these nuclear oncogenes reflects the activation of different mitotic controlling pathways during the development of the skin.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3