Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system

Author:

Baek Joung Hee1,Hatakeyama Jun1,Sakamoto Susumu1,Ohtsuka Toshiyuki1,Kageyama Ryoichiro1

Affiliation:

1. Institute for Virus Research, Kyoto University, Shogoin-Kawahara,Sakyo-ku, Kyoto 606-8507, Japan.

Abstract

The developing central nervous system is partitioned into compartments by boundary cells, which have different properties than compartment cells, such as forming neuron-free zones, proliferating more slowly and acting as organizing centers. We now report that in mice the bHLH factor Hes1 is persistently expressed at high levels by boundary cells but at variable levels by non-boundary cells. Expression levels of Hes1 display an inverse correlation to those of the proneural bHLH factor Mash1, suggesting that downregulation of Hes1 leads to upregulation of Mash1 in non-boundary regions,whereas persistent and high Hes1 expression constitutively represses Mash1 in boundary regions. In agreement with this notion, in the absence of Hes1 and its related genes Hes3 and Hes5, proneural bHLH genes are ectopically expressed in boundaries, resulting in ectopic neurogenesis and disruption of the organizing centers. Conversely, persistent Hes1 expression in neural progenitors prepared from compartment regions blocks neurogenesis and reduces cell proliferation rates. These results indicate that the mode of Hes1 expression is different between boundary and non-boundary cells, and that persistent and high levels of Hes1 expression constitutively repress proneural bHLH gene expression and reduce cell proliferation rates,thereby forming boundaries that act as the organizing centers.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3