Ground forces applied by galloping dogs

Author:

Walter Rebecca M.1,Carrier David R.1

Affiliation:

1. Biology Department, University of Utah, Salt Lake, UT 84112,USA

Abstract

SUMMARY The gallop differs from most other quadrupedal gaits in that each limb plays a unique role. This study compares the ground forces applied by the four limbs and uses force differences between limbs to address the question of why the gallop is the fastest quadrupedal gait. Individual ground forces were recorded from each of the four limbs as six dogs galloped down a runway at constant speed. Trials were videotaped at high speed using a camera positioned perpendicular to the runway, and velocity was measured using photosensors. The trailing forelimb applied greater peak vertical forces than the lead forelimb,however the vertical impulses from the two forelimbs were similar because the lead forelimb had a longer contact interval. The trailing forelimb and lead hindlimb applied greater peak accelerating forces and accelerating force impulses than their contralateral limbs despite their tendency to have shorter contact intervals. The accelerating impulse of both forelimbs combined did not differ significantly from that of both hindlimbs. The forelimbs applied a greater decelerating impulse than the hindlimbs, such that their net fore-aft impulse was decelerating whereas that of the hindlimbs was accelerating. The greater accelerating impulse applied by the trailing forelimb and greater decelerating impulse applied by the lead forelimb are consistent with the forelimbs acting as elastic struts rather than being actively retracted. In contrast, greater accelerating forces were produced by the lead hindlimb while the center of mass was lifted, suggesting that the hindlimbs are more actively extended or retracted during stance. The differences in ground forces measured between paired limbs suggest that the lead forelimb and trailing hindlimb are limited in their ability to apply forces by their positions in the stride cycle rather than by their muscular capacity. Although a bound or half-bound would allow more limbs to produce their maximal forces, a gallop may generate higher speeds because it is more efficient. Galloping could be more efficient than other gaits involving sagittal bending if the increased number of ground contact intervals decreased either the decelerating forces applied at the onset of ground contact or the vertical motion of the center of mass.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Quasi-Direct-Drive Legs for a Frog-Like Jumping Robot;2023 3rd International Conference on Computer, Control and Robotics (ICCCR);2023-03-24

2. Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion;Scientific Reports;2023-02-25

3. Tracing Feline Shoulder toward Adaptive Legged Robots;Journal of the Robotics Society of Japan;2023

4. Use of Solid Mechanics Simulation to Evaluate the Stress Distribution Within an Elastomer for Making Force Sensors and Soft Robots;Proceedings of the 9th IRC Conference on Science, Engineering, and Technology;2023

5. Peak vertical ground force of hand–knee crawling in human adults;Journal of Physical Therapy Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3