Heavy metal detoxification in crustacean epithelial lysosomes: role of anions in the compartmentalization process

Author:

Sterling Kenneth M.1,Mandal Prabir K.1,Roggenbeck Barbara A.1,Ahearn Sean E.1,Gerencser George A.2,Ahearn Gregory A.1

Affiliation:

1. Department of Biology, University of North Florida, 4567 St Johns Bluff Road, S., Jacksonville, FL 32224, USA

2. Department of Physiology, University of Florida, Gainesville, FL, 32610,USA

Abstract

SUMMARYCrustacean hepatopancreatic lysosomes are organelles of heavy metal sequestration and detoxification. Previous studies have shown that zinc uptake by lysosomal membrane vesicles (LMV) occurred by a vanadate- and thapsigargin-sensitive ATPase that was stimulated by a transmembrane proton gradient established by a co-localized V-ATPase associated with this organelle. In the present study, hepatopancreatic LMV from the American lobster Homarus americanus were prepared by standard centrifugation methods and 65Zn2+, 36Cl–, 35SO42– and 14C-oxalate2– were used to characterize the interactions between the metal and anions during vesicular detoxification events. Vesicles loaded with SO42– or PO43– led to a threefold greater steady-state accumulation of Zn2+ than similar vesicles loaded with mannitol,Cl– or oxalate2–. The stimulation of 65Zn2+ uptake by intravesicular sulfate was SO42– concentration dependent with a maximal enhancement at 500 μmol l–1. Zinc uptake in the presence of ATP was proton-gradient enhanced and electrogenic, exhibiting an apparent exchange stoichiometry of 1Zn+/3H+. 35SO42– and 14C-oxalate2– uptakes were both enhanced in vesicles loaded with intravesicular Cl– compared to vesicles containing mannitol, suggesting the presence of anion countertransport. 35SO42– influx was a sigmoidal function of external [SO42–] with 25 mmol l–1 internal [Cl–], or with several intravesicular pH values (e.g. 7.0, 8.0 and 9.0). In all instances Hill coefficients of approximately 2.0 were obtained, suggesting that 2 sulfate ions exchange with single Cl– or OH– ions. 36Cl– influx was a sigmoidal function of external[Cl–] with intravesicular pH of 7.0 and 9.0. A Hill coefficient of 2.0 was also obtained, suggesting the exchange of 2 Cl– for 1 OH–. 14C-oxalate influx was a hyperbolic function of external [oxalate2–] with 25 mmol l–1 internal [Cl–], suggesting a 1:1 exchange of oxalate2– for Cl–. As a group,these experiments suggest the presence of an anion exchange mechanism exchanging monovalent for polyvalent anions. Polyvalent inorganic anions(SO42– and PO43–) are known to associate with metals inside vesicles and a detoxification model is presented that suggests how these anions may contribute to concretion formation through precipitation with metals at appropriate vesicular pH.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3