Cloning and characterization of AgCA9, a novel α-carbonic anhydrase from Anopheles gambiae Giles sensu stricto (Diptera:Culicidae) larvae

Author:

Smith Kristin E.1,VanEkeris Leslie A.1,Linser Paul J.1

Affiliation:

1. The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA

Abstract

SUMMARY Mosquito larvae generate a luminal pH as high as 10.5 in the anterior region of their midgut. The mechanisms responsible for the generation and maintenance of this alkaline pH are largely unknown, but there is evidence suggesting a role for the enzyme carbonic anhydrase (CA). CA has been cloned from the alimentary canal epithelium of Anopheles gambiae larvae and can generate bicarbonate, which is implicated as a buffer for the larval lumen. The question remains as to how the bicarbonate is transported from the cells into the lumen. We hypothesize the presence of a CA within the lumen itself to generate bicarbonate from CO2 produced by the metabolically active alimentary canal cells. Here, we report the cloning and characterization of a novel cytoplasmic-type α-CA from the larval An. gambiae alimentary canal. Antibody immunolocalization reveals a unique protein distribution pattern that includes the ectoperitrophic fluid,`transitional region' of the alimentary canal, Malpighian tubules and a subset of cells in the dorsal anterior region of the rectum. Localization of this CA within the lumen of the alimentary canal may be a key to larval pH regulation,while detection within the rectum reveals a novel subset of cells in An. gambiae not described to date. Phylogenetic analysis of members of theα-CA family from the Homo sapiens, Drosophila melanogaster, Aedes aegypti and An. gambiae genomes shows a clustering of the novel CA with Homo sapiens CAs but not with other insect CAs. Finally, a universal system for naming newly cloned An. gambiae CAs is suggested.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3