Affiliation:
1. Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
2. Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
Abstract
Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a∼24 d experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration, and gross photosynthesis to temperature (∼ 26.5°C and∼29.7°C) and PCO2 (∼ 400 µatm and∼1000 µatm). Large corals calcified more than small corals, but at a slower size-specific rate; area-normalized calcification declined with size. Whole-colony and area-normalized calcification were unaffected by temperature, PCO2, or the interaction between the two. Whole-colony respiration increased with colony size, but the slopes of these relationships differed between treatments. Area-normalized gross photosynthesis declined with colony size, but whole-colony photosynthesis was unaffected by PCO2, and showed a weak response to temperature. When scaled up to predict the response of large corals, area-normalized metrics of physiological performance measured using small corals provide inaccurate estimates of physiological performance of large colonies. Together, these results demonstrate the importance of colony size in modulating the response of branching corals to elevated temperature and high PCO2.
Funder
National Science Foundation
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献