Juvenile Antarctic rockcod, Trematomus bernacchii, are physiologically robust to CO2–acidified seawater

Author:

Davis Brittany E.12,Miller Nathan A.13,Flynn Erin E.1,Todgham Anne E.1

Affiliation:

1. Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA

2. Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA

3. Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA

Abstract

To date, numerous studies have shown negative impacts of CO2-acidified seawater (i.e. ocean acidification, OA) on marine organisms including calcifying invertebrates and fishes; however, limited research has been conducted on the physiological effects of OA on polar fishes and even less on the impacts of OA on early developmental stages of polar fishes. We evaluated aspects of aerobic metabolism and cardiorespiratory physiology of juvenile emerald rockcod Trematomus bernacchii, an abundant fish in the Ross Sea, Antarctica, to elevated partial pressure of carbon dioxide (pCO2) (420 [Ambient], 650 [Moderate] and 1050 [High] μtam pCO2) over a one-month period. We examined cardiorespiratory physiology including heart rate, stroke volume, cardiac output and ventilation, whole organism metabolism via oxygen consumption rate, and sub-organismal aerobic capacity by citrate synthase enzyme activity. Juvenile fish showed an increase in ventilation rate under High pCO2 compared to Ambient pCO2, while cardiac performance, oxygen consumption, and citrate synthase activity were not significantly affected by elevated pCO2. Acclimation time did have a significant effect on ventilation rate, stroke volume, cardiac output and citrate synthase activity, such that all metrics increased over the 4-week exposure period. These results suggest that juvenile emerald rockcod are robust to near-future increases in OA and may have the capacity to adjust for future increases in pCO2 by increasing acid-base compensation through increased ventilation.

Funder

Division of Polar Programs

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3