Revisiting the effects of crowding and feeding in the gulf toadfish, Opsanus beta: the role of Rhesus glycoproteins in nitrogen metabolism and excretion

Author:

Rodela Tamara M.1,Esbaugh Andrew J.1,Weihrauch Dirk2,Veauvy Clémence M.3,McDonald M. Danielle3,Gilmour Kathleen M.1,Walsh Patrick J.1

Affiliation:

1. Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

2. Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

3. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA

Abstract

SUMMARY Models of branchial transport in teleosts have been reshaped by the recent discovery of Rhesus (Rh) glycoproteins, a family of proteins that facilitate the movement of NH3 across cell membranes. This study examines the effects of crowding and feeding on ammonia excretion in gulf toadfish (Opsanus beta) within the context of Rh glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). Four Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) were isolated from toadfish. Tissue distributions showed higher levels of mRNA expression in the gills and liver, moderate levels in the intestine and lower levels in the stomach. Crowding significantly lowered branchial Rh expression and ammonia excretion rates in fasted toadfish. A comparison of Rh expression in the digestive tract revealed relatively low levels of Rhcg1 and Rhcg2 in the stomach and high mRNA abundance of Rhbg, Rhcg1 and Rhcg2 in the intestine of fasted, crowded toadfish. We speculate that these trends may reduce secretion and enhance absorption, respectively, to minimize the amount of ammonia that is lost through gastrointestinal routes. By contrast, these patterns of expression were modified in response to an exogenous ammonia load via feeding. Post-prandial ammonia excretion rates were elevated twofold, paralleled by similar increases in branchial Rhcg1 mRNA, gastric Rhcg1 mRNA and mRNA of all intestinal Rh isoforms. These changes were interpreted as an attempt to increase post-prandial ammonia excretion rates into the environment owing to a gradient created by elevated circulating ammonia concentrations and acidification of the digestive tract. Overall, we provide evidence that toadfish modulate both the expression of Rh isoforms and urea synthesis pathways to tightly control and regulate nitrogen excretion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3