Regulation by calcium of proliferation and morphology of normal human tracheobronchial epithelial cell cultures

Author:

Chopra D.P.1,Sullivan J.K.1,Reece-Kooyer S.1

Affiliation:

1. Institute of Chemical Toxicology, Wayne State University, Detroit, Michigan 48201.

Abstract

Human tracheobronchial epithelial cells have been serially passaged in serum-free medium. This serum-free model was employed to investigate the effects of different concentrations of Ca2+ (0.1, 1.0 and 2.0 mM) on multiplication and morphology of the cells. The responses were analysed in terms of growth kinetics, histochemical and ultrastructural alterations. Culturing of the cells in high Ca2+ (1.0-2.0 mM) medium stimulated cell multiplication characterized by increased colony forming efficiency, greater number of cells per colony and cell population doublings per day. Additionally, the high Ca2+ concentrations induced proliferation in cultures grown to confluency in low Ca2+ (0.1 mM) medium. Cells propagated in low Ca2+ medium consisted of relatively heterogeneous cell populations, with most cells staining positive with periodic acid-Schiff (PAS) reagent. Ultrastructurally the cells exhibited secretory vesicles and microvilli on their surfaces, small desmosomes and intercellular interdigitation between cells and numerous large secretory vesicles in the cytoplasm. The cells grown in high Ca2+ medium acquired characteristics of a highly proliferative phenotype. The cultures consisted of closely packed, relatively homogeneous cells that did not stain with PAS reagent. Their characteristic features were: absence of surface secretory vesicles, reductions of microvilli and intercellular interdigitations, and increases in size and number of desmosomal junctions. The results show that low Ca2+ in the culture medium inhibits cell multiplication and favors the secretory cell phenotype, while high Ca2+ levels stimulate cell multiplication and inhibit the secretory cell phenotype.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3