Modulatory effects of nitric oxide on synaptic depression in the crayfish neuromuscular system

Author:

Aonuma H.1,Nagayama T.1,Takahata M.1

Affiliation:

1. Animal Behaviour and Intelligence, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-8010, Japan. aon@soton.ac.uk

Abstract

A characteristic physiological property of the neuromuscular junction between giant motor neurones (MoGs) and fast flexor muscles in crayfish is synaptic depression, in which repetitive electrical stimulation of the MoG results in a progressive decrease in excitatory junction potential (EJP) amplitude in flexor muscle fibres. Previous studies have demonstrated that l-arginine (l-Arg) modulates neuromuscular transmission. Since l-Arg is a precursor of nitric oxide (NO), we examined the possibility that NO may be involved in modulating neuromuscular transmission from MoGs to abdominal fast flexor muscles. The effect of a NO-generating compound, NOC7, was similar to that of l-Arg, reversibly decreasing the EJP amplitude mediated by the MoG. While NOC7 reduced the amplitude of the EJP, it induced no significant change in synaptic depression. In contrast, a scavenger of free radical NO, carboxy-PTIO, and an inhibitor of nitric oxide synthase, l-NAME, reversibly increased the EJP amplitude mediated by MoGs. Synaptic depression mediated by repetitive stimulation of MoGs at 1 Hz was partially blocked by bath application of l-NAME. Bath application of a NO scavenger, a NOS inhibitor and NO-generating compounds had no significant effects on the depolarisation of the muscle fibres evoked by local application of l-glutamate. The opposing effects on EJP amplitude of NOC7 and of carboxy-PTIO and l-NAME suggest that endogenous NO presynaptically modulates neuromuscular transmission and that it could play a prominent role at nerve terminals in eliciting MoG-mediated synaptic depression in the crayfish Procambarus clarkii.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum;Bredt;Proc. Natl. Acad. Sci. USA,1989

2. Nitric oxide, a novel neuronal messenger;Bredt;Neuron,1992

3. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release;Cooper;J. Neurophysiol,2000

4. On the mechanism of a long-lasting neuromuscular depression in crayfish;Czternasty;Comp. Biochem. Physiol,1980

5. Role of long-3602lasting neuromuscular depression in muscle activity in crayfish;Czternasty;Comp. Biochem. Physiol,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3