Affiliation:
1. Section of Neurobiology and Behavior, Cornell University, Seeley G. Mudd Hall, Ithaca, NY 14853-2702, USA. paul4@u.washington.edu
Abstract
The tuning and pure-tone physiology of the T-cell prothoracic auditory interneuron were investigated in the nocturnal katydid Neoconocephalus ensiger. The T-cell is extremely sensitive and broadly tuned, particularly to high-frequency ultrasound (>20 kHz). Adult thresholds were lowest and showed their least variability for frequencies ranging from 25 to 80 kHz. The average best threshold of the T-cell in N. ensiger ranged from 28 to 38 dB SPL and the best frequency from 20 to 27 kHz. In females, the T-cell is slightly more sensitive to the range of frequencies encompassing the spectrum of male song. Tuning of the T-cell in non-volant nymphs was comparable with that of adults, and this precocious ultrasound sensitivity supports the view that it has a role in the detection of terrestrial sources of predaceous ultrasound. In adults, T-cell tuning is narrower than that of the whole auditory (tympanic) organ, but only at audio frequencies. Superthreshold physiological experiments revealed that T-cell responses were ultrasound-biased, with intensity/response functions steeper and spike latencies shorter at 20, 30 and 40 kHz than at 5, 10 and 15 kHz. The same was also true for T-cell stimulation at 90 degrees compared with stimulation at 0 degrees within a frequency, which supports early T-cell research showing that excitation of the contralateral ear inhibits ipsilateral T-cell responses. In a temporal summation experiment, the integration time of the T-cell at 40 kHz (integration time constant tau =6.1 ms) was less than half that measured at 15 kHz (tau =15.0 ms). Moreover, T-cell spiking in response to short-duration pure-tone trains mimicking calling conspecifics (15 kHz) and bat echolocation hunting sequences (40 kHz) revealed that temporal pattern-copying was superior for ultrasonic stimulation. Apparently, T-cell responses are reduced or inhibited by stimulation with audio frequencies, which leads to the prediction that the T-cell will encode conspecific song less well than bat-like frequency-modulated sweeps during acoustic playback. The fact that the T-cell is one of the most sensitive ultrasound neurons in tympanate insects is most consistent with it serving an alarm, warning or escape function in both volant and non-volant katydids (nymphs and adults).
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献