Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo

Author:

Schuster S.1

Affiliation:

1. Institut fur Biologie I, Hauptstrasse 1, Albert-Ludwigs-Universitat Freiburg, D-79104 Freiburg, Germany. schustef@ruf.uni-freiburg.de.

Abstract

During their entire lives, weakly electric fish produce an uninterrupted train of discharges to electrolocate objects and to communicate. In an attempt to learn about activity-dependent processes that might be involved in this ability, the continuous train of discharges of intact Gymnotus carapo was experimentally interrupted to investigate how this pausing affects post-pause electric organ discharges. In particular, an analysis was conducted of how the amplitude and relative timing of the three major deflections of the complex discharge change over the course of the first 1000 post-pause discharges. The dependence of these variables on the duration of the preceding pause and on water temperature is analysed. In addition, pause-induced small reverberations at the end of the discharge are described. Common to all amplitude changes is a fast initial decrease in amplitude with a slow recovery phase; amplitude changes scale with the duration of the preceding pause and are independent of the interdischarge interval. The absence of changes in the postsynaptic-potential-derived first phase of the discharge together with changes in the amplitude ratio of the third and fourth deflections suggest that the amplitude changes are mainly due to pause-induced changes in the inner resistance of the electric organ. A model is formulated that approximates the pattern of amplitude changes. The post-pause changes described here may provide a new way to test current models of complex discharge generation in Gymnotus carapo and illustrate the speed at which changes of an electric organ discharge can take place.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference13 articles.

1. Magnetic and electric characteristics of the electric fish Gymnotus carapo;Baffa;Biophys. J,1992

2. Electrophysiology of the electric organ in Gymnotus carapo;Bennett;J. Gen. Physiol,1959

3. Analysis of depolarizing and hyperpolarizing inactivation responses in gymnotid electroplaques;Bennett;J. Gen. Physiol,1966

4. The role of electrical discharges in the non-reproductive social behaviour of Gymnotus carapo (Gymnotidae, Pisces);Black-Cleworth;Anim. Behav,1970

5. The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatio-temporal electromotor pattern;Caputi;J. Exp. Biol,1999

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3