Sub-ice foraging behavior of emperor penguins

Author:

Ponganis P.J.1,Van Dam R.P.1,Marshall G.1,Knower T.1,Levenson D.H.1

Affiliation:

1. Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA. pponganis@ucsd.edu

Abstract

Emperor penguins (Aptenodytes forsteri) were equipped with a remote underwater video camera, the Crittercam, to evaluate sub-ice foraging behavior while the birds dived from an isolated dive hole. Three birds dived and foraged successfully for 1 h periods after being trained to wear and to dive with a harness for camera attachment. Video and depth profile recordings revealed that emperor penguins travel at shallow depths (<50 m), ascend to the undersurface of the ice to feed on fish, and descend back to depth to return to the exit hole. Although the mean durations of dives of individual birds with the Crittercam were 21–35 % shorter than the diving durations of these same birds without the camera, the dive profiles in both situations were similar, thus demonstrating a similar foraging strategy in birds diving without the camera. Despite shorter diving durations with the camera, the penguins were still successful at prey capture in 80 % of 91 dives greater than 1 min in duration. Prey included the sub-ice fish Pagothenia borchgrevinki. Hunting ascents (from depth to within 5 m of the surface) occurred in 85 % of dives, ranged from zero to three per dive, and were associated with successful prey capture in 77 % of 128 ascents. Occasionally, several fish were captured during a single ascent. These observations and this application of video technology create a model for further physiological and behavioral studies of foraging, and also emphasize the potential importance of shallow dives as sources of food intake for emperor penguins during foraging trips to sea.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3