Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri

Author:

Costa D.P.1,Gales N.J.1

Affiliation:

1. Department of Biology, Institute of Marine Science, University of California, Santa Cruz, CA 95064, USA. costa@biology.ucsc.edu

Abstract

The New Zealand sea lion, Phocarctos hookeri, is the deepest- and longest-diving sea lion. We were interested in whether the diving ability of this animal was related to changes in its at-sea and diving metabolic rates. We measured the metabolic rate, water turnover and diving behavior of 12 lactating New Zealand sea lions at Sandy Bay, Enderby Island, Auckland Islands Group, New Zealand (50 degrees 30′S, 166 degrees 17′E), during January and February 1997 when their pups were between 1 and 2 months old. Metabolic rate (rate of CO(2) production) and water turnover were measured using the (18)O doubly-labeled water technique, and diving behavior was measured with time/depth recorders (TDRs). Mean total body water was 66.0+/−1.1 % (mean +/− s.d.) and mean rate of CO(2) production was 0. 835+/−0.114 ml g(−)(1)h(−)(1), which provides an estimated mass-specific field metabolic rate (FMR) of 5.47+/−0.75 W kg(−)(1). After correction for time on shore, the at-sea FMR was estimated to be 6.65+/−1.09 W kg(−)(1), a value 5.8 times the predicted standard metabolic rate of a terrestrial animal of equal size. The mean maximum dive depth was 353+/−164 m, with a mean diving depth of 124+/−36 m. The mean maximum dive duration was 8.3+/−1.7 min, with an average duration of 3.4+/−0.6 min. The deepest, 550 m, and longest, 11.5 min, dives were made by the largest animal (155 kg). Our results indicate that the deep and long-duration diving ability of New Zealand sea lions is not due to a decreased diving metabolic rate. Individual sea lions that performed deeper dives had lower FMRs, which may result from the use of energetically efficient burst-and-glide locomotion. There are differences in the foraging patterns of deep and shallow divers that may reflect differences in surface swimming, time spent on the surface and/or diet. Our data indicate that, although New Zealand sea lions have increased their O(2) storage capacity, they do not, or cannot, significantly reduce their at-sea metabolic rates and are therefore likely to be operating near their physiological maximum.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3