Affiliation:
1. Locomotion Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA. younghui@uclink4.berkeley.edu
Abstract
It is difficult to distinguish the independent effects of gravity from those of inertia on a running animal. Simply adding mass proportionally changes both the weight (gravitational force) and mass (inertial force) of the animal. We measured ground reaction forces for eight male humans running normally at 3 m s(−)(1) and under three experimental treatments: added gravitational and inertial forces, added inertial forces and reduced gravitational forces. Subjects ran at 110, 120 and 130 % of normal weight and mass, at 110, 120 and 130 % of normal mass while maintaining 100 % normal weight, and at 25, 50 and 75 % of normal weight while maintaining 100 % normal mass. The peak active vertical forces generated changed with weight, but did not change with mass. Surprisingly, horizontal impulses changed substantially more with weight than with mass. Gravity exerted a greater influence than inertia on both vertical and horizontal forces generated against the ground during running. Subjects changed vertical and horizontal forces proportionately at corresponding times in the step cycle to maintain the orientation of the resultant vector despite a nearly threefold change in magnitude across treatments. Maintaining the orientation of the resultant vector during periods of high force generation aligns the vector with the leg to minimize muscle forces.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference25 articles.
1. Fourier analysis of forces exerted in walking and running;Alexander;J. Biomech,1980
2. Scaling body support in mammals: limb posture and muscle mechanics;Biewener;Science,1989
3. Biomechanics of mammalian terrestrial locomotion;Biewener;Science,1990
4. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure;Cavagna;Am. J. Physiol,1977
5. Walking on Mars;Cavagna;Nature,1998
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献