Functional ureogenesis in the gobiid fish Mugilogobius abei

Author:

Iwata K.1,Kajimura M.1,Sakamoto T.1

Affiliation:

1. Biological Laboratory, Faculty of Education, Wakayama University, Wakayama 640-8510, Japan. katsuiw@center.wakayama-u.ac.jp

Abstract

To examine the transition to ureogenesis, the gobiid fish Mugilogobius abei was immersed in 2 mmol l(−)(1) NH(4)HCO(3) or a (15)N-labelled ammonia solution [1 mmol l(−)(1) ((15)NH(4))(2)SO(4), pH 8.0] for 4–8 days. When exposed to 2 mmol l(−)(1) NH(4)HCO(3) or (15)N-labelled ammonia solution for 4 days, the rate of urea excretion increased to seven times that of the control (in 20 % synthetic sea water) and remained at this level for 4 days. The proportion of nitrogen excreted as urea reached 62 % of total nitrogen excretion (ammonia-N + urea-N). (15)N-enrichment of the amide-N in glutamine in the tissues of fish exposed to (15)N-labelled ammonia was virtually the same as that of ammonia-N: i.e. approximately twice that of urea-N in the excreta and the tissues. Glutamine contents and glutamine synthetase activities in the liver and muscle increased greatly following exposure to ammonia. Urea and citrulline contents in the muscle and whole body of the exposed fish increased significantly, whereas uric acid contents remained unchanged. Carbamoyl phosphate synthetase III (CPSase III) mRNA expression and CPSase III activity were detected in the muscle, skin and gill, but levels were negligible in the liver. Furthermore, all other ornithine-urea cycle (O-UC) enzymes were also detected in muscle, skin and gill. Thus, M. abei clearly shows the transition from ammoniotely to ureotely under ammonia-loading condition and is able to produce urea mainly via the O-UC operating in multiple non-hepatic tissues as a means for ammonia detoxification.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3