Hydrodynamics, shell shape, behavior and survivorship in the owl limpet Lottia gigantea

Author:

Denny M.W.1,Blanchette C.A.1

Affiliation:

1. Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA. mwdenny@leland.stanford.edu

Abstract

On wave-swept rocky shores, limpets are subjected to water velocities in excess of 20 m s(−1), which may impose large hydrodynamic forces. Despite the extreme severity of this flow environment, predictions from conical models suggest that limpets' shells are typically far from the optimal shape that would minimize the risk of dislodgment, a deviation that is allowed by the high tenacity of the limpets' adhesive system. In this study, we test this conclusion using an actual limpet. The shell of Lottia gigantea differs substantially from the hydrodynamic optimum in that its apex is displaced anteriorly to form a plough, which is used to defend the limpet's territory. The hydrodynamic effects of this shape are similar to those observed in conical models: the animal experiences an increased lift when facing into the flow and a decreased lift when the flow is at its back. However, neither effect has a substantial impact on the risk of dislodgment. When the animal is stationary, its adhesion to the substratum is very strong, and its risk of being dislodged is small regardless of its orientation to the flow and despite its sub-optimal shape. In contrast, when the animal is crawling rapidly, its adhesion is substantially decreased, and it would probably be dislodged by rapid flow even if the shell were shaped optimally. The risk of dislodgment by waves is therefore functionally independent of shell shape. In essence, despite the extremely high water velocities to which this species is subjected, its shell has had the ‘permission’ of the flow environment to respond to other selective factors, in particular those associated with its aggressive, territorial behavior. The result is a shell that is both a potent territorial weapon and a functional (albeit less than optimal) hydrodynamic shape.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3