Mass, temperature and metabolic effects on discontinuous gas exchange cycles in eucalyptus-boring beetles (Coleoptera: cerambycidae)

Author:

Chappell M.A.1,Rogowitz G.L.1

Affiliation:

1. Department of Biology, University of California, Riverside, CA 92521, USA. chappell@citrus.ucr.edu

Abstract

Ventilatory accommodation of changing metabolic rates is a relatively little-studied aspect of the discontinuous gas exchange cycles (DGCs) that occur in a wide variety of terrestrial arthropods. We used correlation analysis of resting metabolic rate (RMR, measured as the rate of CO(2) emission; V(CO2)) and several components of the DGC to examine accommodation to both temperature-induced changes and individual variation in RMR in two wood-boring beetles (Phorocantha recurva and P. semipunctata; Coleoptera: Cerambycidae).At low to moderate ambient temperatures (T(a); 10–20 degrees C), Phorocantha spp. displayed a characteristic DGC with relatively brief but pronounced open (O) phase bursts of CO(2) emission separated by longer periods of low V(CO2), the flutter (F) phase. However, the V(CO2) never fell to zero, and we could not reliably differentiate a typical closed (C) phase from the F phase. Accordingly, we pooled the C and F phases for analysis as the C+F phase. At higher T(a) (30 degrees C), the duration of the combined C+F phase was greatly reduced. There were no differences between the two species or between males and females in either RMR or characteristics of the DGC. We found large variation in the major DGC components (cycle frequency, durations and emission volumes of the O and C+F phases); much of this variation was significantly repeatable. Accommodation of temperature-induced RMR changes was almost entirely due to changes in frequency (primarily in the C+F phase), as has been found in several other discontinuously ventilating arthropods. Frequency changes also contributed to accommodation at constant T(a), but modulation of emission volumes (during both O and C+F phases) played a larger role in this case.The DGC is often viewed as a water conservation mechanism, on the basis that respiratory evaporation is minimal during the C and F phases. This hypothesis assumes that the F phase is primarily convective (because of a reduction in tracheal P(O2) and total intratracheal pressure during the C phase). To test this, we measured the DGC in beetles subjected to varying degrees of hypoxia in addition to normoxia. As predicted for a largely diffusive F phase, we found an increase in the volume of CO(2) emitted during the C+F phase in hypoxic conditions (10.4 % oxygen). This finding, together with a reduced tendency to utilize a DGC at high T(a) (when water stress is greatest) and a natural history in which water availability is probably not limiting for any life stage, suggests that a reduction of respiratory evaporation may not have been critical in the evolution of the DGC of Phorocantha spp. Instead, selection may have favored discontinuous ventilation because it facilitates gas exchange in the hypercapnic and hypoxic environments commonly encountered by animals (such as Phorocantha spp.) that live in confined spaces.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3