Myogenesis and muscle metabolism in juvenile Atlantic salmon (Salmo salar) made transgenic for growth hormone

Author:

Levesque H. M.1,Shears M. A.2,Fletcher G. L.2,Moon T. W.1

Affiliation:

1. Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, PO Box 450, Stn A, Ottawa, Ontario, Canada,K1N 6N5

2. Ocean Sciences Centre, Memorial University of Newfoundland, and AquaBounty Technologies Inc., St John's, Newfoundland, Canada, A1C 5S7

Abstract

SUMMARY Atlantic salmon (Salmo salar) made transgenic for growth hormone(GH) and non-transgenic salmon were sampled at 4 and 7 months of age to estimate myogenic factors, satellite cell proliferation and metabolic enzyme activities. The growth rate of 4 month old transgenic salmon was higher than that of non-transgenic salmon. Myosatellite cell (MC) proliferation rates were higher in cells isolated from GH-transgenic salmon compared with cells from non-transgenic salmon of the same mass. Moreover, MCs extracted from non-transgenic salmon demonstrated a higher proliferation capacity when exposed in vitro to salmon GH. White muscle MyoD I mRNA content was higher in transgenic and non-transgenic salmon at 7 months compared with that at 4 months, indicating an effect of age on MyoD I mRNA expression. White muscle myogenin mRNA content varied with fish age and presence of the transgene, and was higher in transgenic fish at 7 months, suggesting a higher differentiation capacity. MyoD I, MyoD II and myogenin mRNA content was higher in red muscle of GH-transgenic fish at 7 months compared with non-transgenic salmon at 7 months. However, red muscle myogenic factor expression was not different between transgenic and non-transgenic fish of the same weight. Enzyme activities in white muscle and liver were highly affected by the presence of the transgene, although this effect was generally dependent on the age of the fish. Glycolytic and oxidative enzyme activities were increased in transgenic salmon liver, indicating a higher metabolic rate in transgenics. This study demonstrates that (1) the higher growth rate of transgenic salmon particularly at 4 months of age could be explained at least in part by higher numbers and proliferation rates of MCs, (2) GH can directly stimulate the proliferation of myosatellite cells extracted from salmon, indicating that GH is one possible factor involved in the higher myosatellite cell proliferation rates in transgenic salmon, (3) MyoD and myogenin mRNA expression are affected by fish age, and (4) metabolic enzyme activities are affected by the age of the fish at least in liver and white muscle, and any transgene effect is dependent upon the age of the fish.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3