Fluid transport by gallbladder epithelium

Author:

Spring K. R.

Abstract

The absorption of fluid by epithelial tissues is thought to be due to the existence of hypertonic regions within the epithelium. The magnitude of the required hypertonicity as well as its localization have been the subject of considerable experimental and theoretical effort. Model calculations demonstrated the need for knowledge of the water permeability of the membranes of epithelial cells for the purpose of estimation of the osmotic gradients required for fluid absorption. We measured the hydraulic water permeability of the individual cell membranes of Necturus gallbladder by quantitative light microscopy. The water permeabilities were sufficiently high so that small osmotic gradients were required to achieve normal rates of fluid transport. The cell osmolality was calculated to exceed that of the mucosal bathing solution by about 2 mosmol kg-1, and the basolateral interstitial osmolality was calculated to be about 1 mosmol kg-1 greater than that of the cell. The fluid absorbed by the epithelium must be slightly hypertonic to the bathing solutions. Knowledge of the apical cell membrane water permeability and the relative area of the cell and tight junction allow a calculation of the relative flow of fluid across both pathways. It can be readily shown that osmotically induced flow across the epithelium occurs predominantly transcellularly because of the small area of the junctional pathway and the high water permeability of the cell membranes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3