Potassium ion transport ATPase in insect epithelia

Author:

Harvey W. R.,Cioffi M.,Dow J. A.,Wolfersberger M. G.

Abstract

K+ transport by the epithelia of midgut, salivary glands, Malpighian tubules, sensory sensilla, possibly rectum, and other organs of certain insects appears to use a unique K+ ATPase. Ouabain inhibition of transport-related events has not been demonstrated in these epithelia. The K+ pump is unlike the Na-K;ump but resembles the H;ump of phosphorylating membranes in its transport orientation, efficient thermodynamics, speculated two K+ per one MgATP2- stoichiometry, electrogenicity, and structure. Older electrochemical, tracer flux, and conductance evidence suggested that the K+ pump was on the apical plasma membrane of transporting cells in these epithelia. New X-ray microanalytical studies (XMA), reveal that the K+ concentration in all cells is more than 100 mM. Together with new microelectrode data these XMA results confirm the apical K+ pump location, resolve the K+ transport sport route, and suggest that the goblet cell cavity facilitates the generation of a large apical PD which may be used in nutrient absorption and pH regulation. K+ portasomes, which resemble F1-Fo ATPase particles, stud these K+ transporting apical membranes and are though to be the unit of active K+ transport. We have suggested a K+ transport mechanism in which two cations (2K+) are abandoned in an isolated domain of the portasomes during ATP2-hydrolysis and are repelled to the opposite membrane side via a K+ channel. Small peptides hydrolysed from the delta-endotoxin of Bacillus thuringiensis inhibit the K+ transport and may be useful as K+ pump inhibitors, apical membrane probes and insecticides. Goblet cell apical membrane fragments (GCAM) as well as fragments from columnar cell apical membrane (CCAM), lateral membrane (LM) and basal membranes (BM) were isolated as clean fractions using ultrasound, aspiration, and both differential and density gradient centrifugation; purification was monitored by electron microscopy. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) reveals that GCAM, CCAM, LM and BM have very different protein compositions. Preliminary enzymology is consistent with the K+ ATPase being on the apical plasma membrane of the goblet cells of midgut and enveloping cells of sensilla.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3