Regulation of transcript encoding the 43K subsynaptic protein during development and after denervation

Author:

Baldwin T.J.1,Theriot J.A.1,Yoshihara C.M.1,Burden S.J.1

Affiliation:

1. Biology Department, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

The postsynaptic membrane of vertebrate neuromuscular synapses is enriched in the four subunits of the acetylcholine receptor (AChR) and in a peripheral membrane protein of Mr = 43 × 10(3) (43K). Although AChRs are virtually restricted to the postsynaptic membrane of innervated adult muscle, developing and denervated adult muscle contain AChRs at nonsynaptic regions. These nonsynaptic AChRs accumulate because the level of mRNA encoding AChR subunits increases in response to a loss of muscle cell electrical activity. We have determined the level of mRNA encoding the 43K subsynaptic protein in developing muscle and in innervated and denervated adult muscle. We isolated a cDNA that encodes the entire protein-coding region of the 43K subsynaptic protein from Torpedo electric organ and used this cDNA to isolate a cDNA that encodes the 43K subsynaptic protein from Xenopus laevis. We used the Xenopus cDNA to measure the level of transcript encoding the 43K protein in embryonic muscle and in innervated and denervated adult muscle by RNase protection. The level of transcript encoding the 43K protein is low in innervated adult muscle and increases 25- to 30-fold after denervation. The level of transcript encoding the alpha subunit of the AChR increases to a similar extent after denervation. Moreover, during development, transcripts encoding the 43K protein and the alpha subunit are expressed initially at late gastrula and are present in similar quantities in embryonic muscle. These results demonstrate that transcripts encoding the 43K protein and AChR subunits appear coordinately during embryonic development and that the level of mRNA encoding the 43K protein is regulated by denervation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3