Affiliation:
1. Institute of Neurology, London, UK.
Abstract
Neural cell adhesion molecules (N-CAMs) are a family of cell surface sialoglycoproteins encoded by a single copy gene. A full-length cDNA clone that encodes a nontransmembrane phosphatidylinositol (PI) linked N-CAM of Mr 125 × 10(3) has been isolated from a human skeletal muscle cDNA library. The deduced protein sequence encodes a polypeptide of 761 amino acids and is highly homologous to the N-CAM isoform in brain of Mr 120 × 10(3). The size difference between the 125 × 10(3). The size difference between the 125 × 10(3) Mr skeletal muscle form and the 120 × 10(3) Mr N-CAM form from brain is accounted for by the insertion of a block of 37 amino acids called MSD1, in the extracellular domain of the muscle form. Transient expression of the human cDNA in COS cells results in cell surface N-CAM expression via a putative covalent attachment to PI-containing phospholipid. Linked in vitro transcription and translation experiments followed by immunoprecipitation with anti-N-CAM antibodies demonstrate that the full-length clone of 761 amino acid coding potential produces a core polypeptide of Mr 110 × 10(3) which is processed by microsomal membranes to yield a 122 × 10(3) Mr species. Taken together, these results demonstrate that the cloned cDNA sequence encodes a lipid-linked, PI-specific phospholipase C releasable surface isoform of N-CAM with core glycopeptide molecular weight corresponding to the authentic muscle 125 × 10(3) Mr N-CAM isoform. This is the first direct correlation of cDNA and deduced protein sequence with a known PI-linked N-CAM isoform from skeletal muscle.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献