Spatial- and temporal-restricted pattern for amelogenin gene expression during mouse molar tooth organogenesis

Author:

Snead M.L.1,Luo W.1,Lau E.C.1,Slavkin H.C.1

Affiliation:

1. Department of Basic Sciences, School of Dentistry, University of Southern California, Los Angeles 90089-0191.

Abstract

Position- and time-restricted amelogenin gene transcription was analysed in developing tooth organs using in situ hybridization with asymmetric complementary RNA probes produced from a cDNA specific to the mouse 26 × 10(3) Mr amelogenin. In situ analysis was performed on developmentally staged fetal and neonatal mouse mandibular first (M1) and maxillary first (M1) molar tooth organs using serial sections and three-dimensional reconstruction. Amelogenin mRNA was first detected in a cluster of ameloblasts along one cusp of the M1 molar at the newborn stage of development. In subsequent developmental stages, amelogenin transcripts were detected within foci of ameloblasts lining each of the five cusps comprising the molar crown form. The number of amelogenin transcripts appeared to be position-dependent, being more abundant on one cusp surface while reduced along the opposite surface. Amelogenin gene transcription was found to be bilaterally symmetric between the developing right and left M1 molars, and complementary between the M1 and M1 developing molars; indicating position-restricted gene expression resulting in organ stereoisomerism. The application of in situ hybridization to forming tooth organ geometry provides a novel strategy to define epithelial-mesenchymal signal(s) which are believed to be responsible for organ morphogenesis, as well as for temporal- and spatial-restricted tissue-specific expression of enamel extracellular matrix.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3