Development of sensory processes during limb regeneration in adult crayfish.

Author:

Cooper R L1

Affiliation:

1. Thomas Hunt Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, USA. RLcoop1@pop.uky.edu

Abstract

The capacity of the crayfish Procambarus clarkii to regenerate its walking legs provides a system for studying the mechanisms of neural regeneration and repair. A set number of excitatory and inhibitory motor neurons innervate all the limb musculature throughout the normal development and regeneration of a limb. The cell bodies of the motor neurons reside within the segmental ganglion and, upon loss of the limb, their axons regrow from their severed distal ends. The cell bodies of the sensory neurons, in contrast, are located close to their sensory endings within the limb, and they are therefore lost, along with the limb, upon autotomy, leaving the severed, distal axonal stumps of the sensory neurons within the ganglionic root. During the regeneration of a limb, new sensory neurons develop within the limb, and their axons must then grow into the ganglionic root to make the appropriate connections for the new limb to become functional. Evidence is presented in the present paper that the sensory axonal stumps do not degenerate before the new sensory neurons appear within the root as the limb regenerates. These results also indicate a progressive advance of growth cones, presumably sensory in origin, towards the neuropil within the ganglion over time.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3