Processing of defensive pigment in Aplysia californica: acquisition, modification and mobilization of the red algal pigment, r-phycoerythrin by the digestive gland.

Author:

Coelho L,Prince J,Nolen T G

Abstract

The marine snail Aplysia californica obtains its purple defensive ink exclusively from the accessory photosynthetic pigment r-phycoerythrin, which is found in the red seaweeds of its diet. The rhodoplast digestive cell, one of three types of cell lining the tubules of the digestive gland, appears to be the site of catabolism of red algal chloroplasts (rhodoplasts) since thylakoid membranes, including phycobilisome-sized membrane-associated particles, were found within the large digestive vacuoles of this cell. Immunogold localization showed that there was a statistically significant occurrence of the red algal phycobilisome pigment r-phycoerythrin within these rhodoplast digestive vacuoles, but not in other compartments of this cell type (endoplasmic reticulum, mitochondria, nucleus) or in other tissues (abdominal ganglion). Immunogold analysis also suggested that the rhodoplast vacuole is the site for additional modification of r-phycoerythrin, which makes it non-antigenic: the chromophore is either cleaved from its biliprotein or the biliprotein is otherwise modified. The hemolymph had spectrographic absorption maxima typical of the protein-free chromophore (phycoerythrobilin) and/or r-phycoerythrin, but only when the animal had been feeding on red algae. Rhodoplast digestive cells and their vacuoles were not induced by the type of food in the diet: snails fed green seaweed and animals fed lettuce had characteristic rhodoplast cells but without the large membranous inclusions (rhodoplasts) or phycobilisome-like granules found in animals fed red seaweed. Two additional cell types lining the tubules of the digestive gland were characterized ultrastructurally: (1) a club-shaped digestive cell filled with electron-dense material, and (2) a triangular 'secretory' cell devoid of storage material and calcium carbonate. The following model is consistent with our observations: red algal rhodoplasts are freed from algal cells in the foregut and then engulfed by rhodoplast digestive cells in the tubules of the digestive diverticula, where they are digested in membrane-bound vacuoles; r-phycoerythrin is released from phycobilisomes on the rhodoplast thylakoids and chemically modified before leaving the digestive vacuole and accumulating in the hemolymph; the pigment then circulates throughout the body and is concentrated in specialized cells and vesicles of the ink gland, where it is stored until secreted in response to certain predators.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3